
© 2013 EDB All rights reserved. 1

Parallel Sequential Scan

• Robert Haas, Amit Kapila | PGCon 2015

© 2015 EDB All rights reserved. 2

• PostgreSQL 9.4 includes the basic facilities that will be
used to implement parallel query (dynamic background
workers, dynamic shared memory, shared memory
message queues).

• PostgreSQL 9.5 includes most of the plumbing needed
for parallel computation (error propagation, parallel
mode/contexts).

• Working patches exist for parallel sequential scan, but
were not committed to PostgreSQL 9.5 due to
unresolved issues.

Overall Status

© 2015 EDB All rights reserved. 3

• Background workers can talk to user backends using
the frontend-backend protocol.

• Protocol messages are sent via a shared memory
message queue (shm_mq).

• In particular, if the background worker does something
that generates an ERROR, WARNING, or other
message, it can send that message to the master, and
the master can receive it.

New in 9.5: Message Propagation

© 2015 EDB All rights reserved. 4

• Using parallel contexts, backend code can launch
worker processes.

• Various pieces of state are synchronized from the
parallel group leader to each worker (more on that in a
minute).

• Neither the master nor the workers are permitted to
make permanent modifications to any of the
synchronized state while parallelism is active.

• No writes are allowed.
• Lots of backend code can run just fine in a parallel

worker!

New in 9.5: Parallel Mode/Contexts

© 2015 EDB All rights reserved. 5

• Libraries dynamically loaded by PostgreSQL.
• Authenticated user ID and current database.
• All GUC values.
• XID for current and top level transactions.

• XIDs that appear as committed.
• Combo CID mappings.

• Active and transaction snapshots.
• Current user ID and security context.

What Gets Synchronized?

© 2015 EDB All rights reserved. 6

• Heavyweight Lock Handling for Parallel Mode/Contexts
– Must prevent unprincipled deadlocks between

parallel workers.
• Assessing Parallel Safety

– Every function in pg_proc is labelled to indicate
whether it can be used in parallel mode. Most can!

– Query planner is modified to search the query tree
for unsafe functions, or any operation that writes
data.

Patches for 9.6 (1 of 2)

© 2015 EDB All rights reserved. 7

• Parallel Seq Scan
– General Executor Support For Parallelism

– New Executor Nodes: Funnel, Partial Seq Scan

– Might get split into several smaller patches

Patches for 9.6 (2 of 2)

© 2015 EDB All rights reserved. 8

• Funnel
– Has one child, runs multiple copies in parallel.

– Combines the results into a single tuple stream.

– Can run the child itself if no workers available.
• Partial Seq Scan

– Scans part of a relation sequentially.

– Specifically, the part not scanned by any other
copy of the same partial seq scan.

Parallel Seq Scan - New Nodes

© 2015 EDB All rights reserved. 9

• Funnel

Number of Workers: 4

-> Partial Seq Scan on tbl_parallel

• Each worker will scan part of the tbl_parallel; together,
they will scan the whole thing.

Parallel Seq Scan – Example Plan

© 2015 EDB All rights reserved. 10

• To perform parallel scan master and worker backend
needs to share some information

– Planned Stmt which needs to be executed by each
worker

– Bind Parameters

– PARAMS_EXEC parameters (Execution time
params required for evaluation of subselects)

– Tuple Queues, to send tuples from worker to
master backend

– Instrumentation information required by Explain or
other stats required by external utilities like
pg_stat_statements

Parallel Seq Scan – Information Sharing

© 2015 EDB All rights reserved. 11

• parallel_degree - Maximum number of parallel workers
that can be allocated to a particular parallel operation

• cpu_tuple_comm_cost - Cost of CPU time to pass a
tuple from worker to master backend.

• parallel_setup_cost - Cost of setting up shared memory
for parallelism, and launching workers.

Parallel Seq Scan – Tuning Parameters

© 2015 EDB All rights reserved. 12

• Parallel workers are launched at the start of funnel
node execution

• Parallel workers will be stopped
– As soon as last tuple is retrieved

– During rescan

– At end of execution
• Parallel workers will execute Partial Seq Scan node

and produce tuples which are sent back to master
backend

Parallel Workers

© 2015 EDB All rights reserved. 13

• Two different strategies have been considered to
allocate work for backend workers

– Block-By-Block and Fixed Chunks
• Performance measurements didn't show much

difference between the approaches, at least on the
machines we tested.

• Preferred Block-By-Block, as that will allow work to be
distributed dynamically based on the work finished by
individual worker.

Parallel Workers – Work Allocation

© 2015 EDB All rights reserved. 14

Performance Data

Common non-default settings

shared_buffers=8GB; min_wal_size=5GB; max_wal_size=10GB

checkpoint_timeout =30min; max_connections=300;

max_worker_processes=100;

Test setup

create table tbl_perf(c1 int, c2 char(1000));

insert into tbl_perf
values(generate_series(1,30000000),'aaaaa');

Explain analyze select c1 from tbl_perf where c1 >
calc_factorial($1,10) and c2 like '%aa%';

Script used to take data is attached.

teststatement[ntests]="Explain analyze select c1 from tbl_perf where
c1 > calc_factorial(22500000,10) and c2 like '%aa%';"
let "ntests++"

create_calc_factorial="create or replace function calc_factorial(a integer, fact_val integer) returns integer
as \$\$
begin

© 2015 EDB All rights reserved. 15

Performance Data

0 2 4 8 16 32 64
0

50000

100000

150000

200000

250000

300000

Explain analyze select c1 from tbl_perf where c1 > calc_factorial($1,10) and c2 like '%aa%';

median of 3 runs

1% Rows Qualified
10% Rows Qualified

25% Rows Qualified

Degree of parallelism

T
im

e
 in

 m
ill

is
e

c

● With increase in degree of parallelism (more parallel workers),
the time to complete the execution reduces.

● Along with workers, master backend also participates in execution
due to which you can see more time reduction in some cases.

● After certain point, increasing number of workers won't help.

© 2015 EDB All rights reserved. 16

Wondering why 2 new nodes (Funnel and PartialSeqScan) have
been added?

Future Work

© 2015 EDB All rights reserved. 17

• Example for Join Evaluation
Nested Loop
-> Seq Scan on foo
-> Index Scan on bar
 Index Cond: bar.x = foo.x

• Now, if a parallel sequential scan is cheaper than a regular
sequential scan, we can instead do this:
Nested Loop
-> Funnel
 -> Partial Seq Scan on foo
-> Index Scan on bar
 Index Cond: bar.x = foo.x

• The problem with this is that the nested loop/index scan is
happening entirely in the master.

Future Work – Join Pushdown (1 of 2)

© 2015 EDB All rights reserved. 18

• We can transform the plan to
Funnel
-> Nested Loop
 -> Partial Seq Scan on foo
 -> Index Scan on bar
 Index Cond: bar.x = foo.x

• The will allow the workers to execute the nested loop/index scan
in parallel; we merge the results afterwards.

Future Work – Join Pushdown (2 of 2)

© 2015 EDB All rights reserved. 19

• We can push the Aggregates below the Funnel
HashAggregate
-> Funnel
 -> Partial Seq Scan on foo
 Filter: x = 1

• Assuming we have infrastructure to push the HashAggregates, we
can convert it to
HashAggregateFinish
-> Funnel
 -> HashAggregatePartial
 -> Partial Seq Scan on foo
 Filter: x = 1

Future Work – Aggregate Pushdown

© 2015 EDB All rights reserved. 20

• Any questions?

Thanks.

	Presentation Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

